

Engineering at Glyndŵr

Faculty of Arts, Science & Technology

Sven Mysliwietz Arne Schmakeit

Glyndŵr University

- Full university status in 2008, formally known as the North East Wales Institute of Higher Education (NEWI)
- Named after the medieval welsh prince *Owain Glyndŵr*, who established universities throughout Wales in the early 15th century.

Statistics

- 9000 Students (5000 Full Time / 4000 Part Time)
- 450 Academic Staff
- 500 Operational Staff

YOUR

TIME

Engineering at Glyndŵr - Faculty of Arts, Science & Technology

Glyndŵr University

Statistics

- Teaching Campus Sites
 - Wrexham Campus
 - Northop Campus
 - London Campus
- Research Sites
 - OpTIC Glyndwr *St Asaph*
 - Composite Materials Research Centre *Broughton*

<u>Glyndŵr University – Wrexham Campus</u>

- Engineering & Computing Labs
- TV & Radio Studios
- The Wall Recording Studio
- Scene of Crime Suite
- Human Performance Labs
- Art School
- Complementary Medicine Clinic
- Centre for the Child
- Centre for Creative Industries
- Drama Studios
- Libraries
- Student Support Services
- Accommodation

<u>Glyndŵr University – Wrexham Campus</u>

Wrexham Village

- 323 en-suite bedrooms
- 24-hour security/staff
- Secured car parking
- Fully furnished communal living area

<u>Glyndŵr University – Wrexham Campus</u>

Excellent Sport Facilities

- International hockey pitch
- Sports hall
 - Basket ball
 - Badminton
 - Table tennis
- Fitness centre
 - Gym
- Astroturf pitches
- Dance Studios

Off Campus

- DW Sports
- Total Fitness
- Pure Gym (24 hr)

<u>Glyndŵr University – Research Facilities</u>

Advanced Composite Training & Development Centre

- Training on manufacturing processes and skills needed to produce composite parts.
- Collaborative R&D, Research Council funded collaborations, European Union Funding and contract research

OpTIC Glyndwr

- Leading centre for the research and development of cutting edge opto-electronics
- Precision polishing
- Photovoltaics applied research

<u>Glyndŵr University – International Profile</u>

We have full time students on our courses from:

- France
- Belgium
- Spain
- Greece
- Finland
- Germany
- Portugal
- Sweden
- India
- Bangladesh
- China
- Nigeria
- Malaysia

Engineering at Glyndŵr University

BEng (Hons) Undergraduate Programmes:

- Aeronautical & Mechanical Engineering
- Automotive Engineering
- Renewable and Sustainable Engineering
- Electrical & Electronic Engineering

BEng Industrial Engineering Programmes:

- Electrical Engineering
- Automation Systems
- Mechatronics
- Mechanical or Pant Maintenance
- Engineering Management

MSc Engineering Programmes:

- MSc Engineering:
- MSc Engineering (Mechanical Manufacturing)
- MSc Engineering (Renewable)
- MSc Engineering (Electrical & Electronic)
- MSc Unmanned Aircraft Systems Technology

Improving the world through engineering

Why Study at Glyndŵr University?

Industrial Links

TATA STEEL

MICCUC CHETCHE

A R

Accreditation

Improving the world through engineering

Innovation

Ultra Precision Services in polishing mirror segments for the £900million European-Extremely Large Telescope (E-ELT) project.

Academic Teaching

The academic staff have valuable industrial experience

Staff members are engaging in research within their field

Staff are always available to help, such as maths support

The engineering department employ a **Open Door Policy**

Why Study at Glyndŵr University?

- The university has recently invested in new engineering facilities:
- Performance Car Laboratories
- Flight simulator
- Instrumentation laboratory
- Rapid prototyping facilities

Wrexham Glyndwr University received a sliver award for the quality of its teaching (June2017)

Why Study at Glyndŵr University?

ANSYS[®]

HABAQUS

The university has the latest industrial software:

ANSYS(CFD) CATIA V5 ABAQUS MATLAB SIMULINK MULTISIM

Liverpool,

A483

Chester

Wrexham

A55

A483

Manchester

Birmingham

Wrexham

Engineering at Glyndŵr - Faculty of Arts, Science & Technology

Why Study in Wrexham?

Location

The University has the best of both city and country life with cities Chester, Manchester and Liverpool on Glyndwr's doorstep

Bangor

Liverpool

A483

Chester

Wrexham

A55

A483

Manchester

Birmingham

Wrexham

Engineering at Glyndŵr - Faculty of Arts, Science & Technology

Why Study in Wrexham?

Art & Culture

The university boasts a number of popular venues including the William Aston Hall, Oriel Sycharth Gallery, Oriel Wrecsam Gallery and Techniquest Glyndwr

Bangor

Liverpool

A483

Chester

Wrexham

A55

A483

Manchester

Birmingham

Wrexham

Engineering at Glyndŵr - Faculty of Arts, Science & Technology

Why Study in Wrexham?

Shopping & Nightlife

Three floors and more than 28,000sq ft of retail space will meet you at Eagles Meadow.

Student life is nothing without top bars, pubs and nightclubs and Wrexham is no different.

Bangor

IT'S YOUR

TIME

Engineering at Glyndŵr - Faculty of Arts, Science & Technology

Why Study in Wrexham?

Adventure

North Wales is the Adventure Capital of the UK

What Glyndŵr University Can Offer You?

August 2019

Engineering Summer Schools

- Aeronautical & Mechanical Engineering
- Electrical & Electronic Engineering
- Automotive Engineering
- Renewable and Sustainable Engineering
- Mechatronics

September 2019

BEng (Hons)

- Aeronautical & Mechanical Engineering
- Electrical & Electronic Engineering
- Automotive Engineering
- Renewable and Sustainable Engineering
- Mechatronics (BEng Industrial)
- Engineering Management (BEng Industrial

September 2020

MSc in Engineering

- MSc Engineering:
- MSc Engineering (Mechanical Manufacturing)
- MSc Engineering (Renewable)
- MSc Engineering (Electrical & Electronic)
- MSc Unmanned Aircraft Systems Technology

What Glyndŵr University Can Offer You?

August 2019

Engineering Summer Schools

- Aeronautical & Mechanical Engineering
- Electrical & Electronic Engineering
- Automotive Engineering
- Renewable and Sustainable Engineering
- Mechatronics

September 2019

BEng (Hons)

- Aeronautical & Mechanical Engineering
- Electrical & Electronic Engineering
- Automotive Engineering
- Renewable and Sustainable Engineering
- Mechatronics (BEng Industrial)
- Engineering Management (BEng Industrial

July-August 2020

MSc Fast Track Engineering

• MSc Engineering:

energy

- MSc Engineering (Mechanical Manufacturing)
- MSc Engineering (Electrical & Electronic)

What Glyndŵr University Can Offer You?

August 2019

Computing Summer Schools

- CISCO Networking Academy
- Computer Game Development

September 2019

BSc (Hons)

- Computing
- Computer Science
- Computer Network and Security
- Cyber Security
- Computer Game Development

September 2020

MSc in Computing

- MSc Computer Networks
- MSc Computer Science
- MSc Computer Game Development

Glyndŵr University Summer School

Summer School 2019 – [Dates to be confirmed]

Engineering

Aeronautical & Mechanical Engineering

Electrical & Electronic Engineering

Automotive Engineering

Renewable and Sustainable Engineering

Mechatronics

Computing

Computer Games Development

CISCO Networking Academy

<u>Glyndŵr University Engineering Summer School – Overview</u>

Aeronautical & Mechanical Engineering	Electrical & Electronic Engineering	Mechatronics Engineering	Automotive Engineering	Renewable and Sustainable Engineering
		ENG501 Business and Managemen 10 UK Credits (Assignment)	nt	
		ENG575 Analytical Techniques 10 UK Credits (Exam)	5	
	ENG712 Control 10 UK Credits (Exam)		ENG598 Engine Technology 10 UK Credits (Exam)	ENG50D Low Carbon
ENG504 Dynamics 10 UK Credits (Exam)	ENG520 Electrical Power Systems 10 UK Credits (Exam)	ENG50c Mechatronics Systems 10 UK Credits (Exam)	ENG504 Dynamics 10 UK Credits (Exam)	20 UK Credits (Exam)
	LAN 414 Englisl	n for Professional Purposes Upper 20 UK Credits (Exam)	Intermediate Level	

Glyndŵr University Engineering Summer School – Timetable (Example)

	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00
Monday	ENG575 Analytical Techniques	ENG501 Business Management				ENC Busi Manag	G501 iness gement	ENC Anal Techi	3575 ytical niques
Tuesday	ENG575 Analytical Techniques	ENG5 Analyt Technic	575 ical ques		ENC Busi Manag	3501 ness gement		LAN Eng	J414 Jlish
Wednesday	ENG575 Analytical Techniques	ENG501 Business Management	LAN Eng	V414 glish		ENC Busi Manag	G501 iness gement	ENC Anal Techi	3575 ytical niques
Thursday	ENG575 Analytical Techniques	ENG501 Business Management	ENC Anal Techr	3575 ytical niques		ENC Busi Manag	G501 iness gement	LAN Eng	J414 Jlish
Friday	ENG575 Analytical Techniques	ENG501 Business Management	LAN Eng	v414 glish		ENC Busi Manag	G501 iness gement	ENC Anal Techr	3575 ytical niques

Glyndŵr University Engineering/Computing Summer School – Finances

2019 Summer School Costs

2019 Summer School Application

Total Cost: 1000£ (~1100€)

- All Technical Tuition
- All English Language Tuition
- 4 Weeks Accommodation (on campus)
- Airport Transfers (where possible)

https://www.glyndwr.ac.uk/en/europeanstudents/summerschool/

Follow the link to "Summer School" from:

- 2. Register and select your programme
- 3. Pay your £50 (€65) deposit
- 4. Your place is now reserved

Note: Applications are limited so apply early

Glyndŵr University Engineering BEng (Hons)

September 2019

Aeronautical & Mechanical Engineering Electrical & Electronic Engineering Automotive Engineering Renewable and Sustainable Engineering Mechatronics (BEng Industrial) Engineering Management (BEng Industrial)

ng the world through engineering

energy

Glyndŵr University Computing BSc (Hons)

September 2019

Computing

Computer Science

Computer Network and Security

Creative Computing

Cyber Security

Computer Game Development

<u>Glyndŵr University Engineering BEng (Hons) – Overview</u>

Aeronautical & Mechanical Engineering	Automotive Engineering	Electrical & Engin	z Electronic eering	Renewable and Sustainable Engineering	Mechatronics Engineering	Engineering Management
			ENG684 Project (Disser	tation)		
		E	ENG685 ngineering Modelling	& Simulation		
ENG68' Aerodynan	7 nics	ENC Electronics, De	660C esign & Testing	ENG688 Design For X	ENG669 Industry 4.0	ENG626 Project and Manufacturing Operations Management
ENG690 Structural Vibration	ENG692 Automotive Dynamics and Powertrain Analysis	ENG696 Further Control Engineering		ENG694 Advanced Renewable Technology	ENG662 Mechatronics Application	BUS605 Managing Workforce, Engagement and Commitment
(O) ENG698 Aircraft Stability Control & Design	(O) ENG690	(O) ENG645	(O) ENG663			
(O) ENG616 Advanced Thermo-fluid & Turbomachinery	Structural Vibration	Power Electronics and Electric Drives	Industrial Communication Systems	ENG667 Maintenance & Safety Systems		
(O) ENG6 Composite Ma	91 aterials					

Glyndŵr University Engineering BEng (Hons) – T1 Timetable (Example)

BEng Aeronautical & Mechanical Engineering

	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00
Monday		ENG6 Engineering M Simula	85 Iodelling & tion		ENC Aerody	5687 mamics			
Tuesday	EN Structura	G690 l Vibration					ENC Engineering & Sim	G685 g Modelling ulation	
Wednesday	ENG684 Dissertation								
Thursday									
Friday									

<u>Glyndŵr University Engineering BEng (Hons) – T2 Timetable (Example)</u>

BEng Aeronautical & Mechanical Engineering

	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00
Monday					(O) EN Aircraft Control a	NG698 Stability & Design			
Tuesday	(O) E Advanced T Turbon	NG616 hermo-fluid & nachinery			(O) EI Composite	NG691 e Materials			
Wednesday	ENG684 Dissertation								
Thursday									
Friday									

<u>Glyndŵr University Engineering BEng (Hons) – Finances</u>

Tuition Fees for Bachelor Degree

September 19/20 Tuition Fees Engineering / Computing Courses: Actual fee: £ 8100 £ 1000 Cashback (Apply until 01.07.19) £ 300 Cantine Card

Total £ 6800 = ~7500 €

<u>Glyndŵr University Engineering BEng (Hons) – Finances</u>

2019/20 Engineering Bachelor Degree Application

- Applications are open now for 2019/20
- 2. Apply via UCAS or directly

1.

3. The "Direct Application Form" can be downloaded from:

www.glyndwr.ac.uk/en/Europeanstudents/Howtoapply

4. Email back to: admissions@glyndwr.ac.uk

Glyndŵr University Engineering MSc Fast Track

July-August 2020

MSc Engineering:

MSc Engineering (Mechanical Manufacturing)

MSc Engineering (Electrical & Electronic)

Glyndŵr University Engineering MSc Fast Track

	MSc Unmanned Aircraft System					
Mechanical Manufacturing	Renewable & Sustainable Energy	Electrical & Electronic	Technology			
	ENG7	40 Jothada & DC Studios				
	ENG/ Engineering Desig	n & Innovation				
	FNG741		ENG759			
Engineering Systems Modelling & Simulation UAS Technology & Applic						
(O) ENG742	(O) EN	ENG763				
Advanced & Composite Materials	Advanced Control Enginee	UAV Construction				
ENG766	ENG	775	ENG762			
Structural Integrity & Optimisation	Power Electronics, Driv	ve and Energy Systems	UAS Operations & The Law			
ENG769 Industry 4.0 Manufacture and Production	ENG7736 Analysis of Renewable and Sustainable Systems	ENG774 Circuit Design and Electronic Testing	ENG764 UAS Sensor Technology			
	ENGM	166	•			
	Disserta	ation				

<u>Glyndŵr University Engineering MSc Fast Track – Programme Delivery</u>

June	July	August	Sep - Nov	September - May
	ENG740 Engineering Research Methods & Post Graduate Studies	ENG742 Advanced Composite Materials		
Access to Teaching Material via Moodle Prior to Taught Elements	ENG765 Engineering Design & Innovation	ENG766 Structural Integrity & Optimisation	Self-Learning and Assessments + ENGM66 Dissertation	ENGM66 Dissertation
	ENG741 Engineering Systems Modelling & Simulation	ENG769 Industry 4.0 Manufacture and Production		

MSc in Engineering (Mechanical Manufacturing)

Student Achievements

Over 1000+ students graduated from Glyndwr University

Student Achievements

Name: Andreas Manz

investigations in recent years have proven that drag can be reduced using unever structures on flat surfaces. This study characterises flow around a circular

cylinder and investigates the potential of

a bionic structure to reduce air resistance in a Reynolds number range between Re.=8.09-104 and Re.=2.02-105. A wind tunnel

analysis was conducted at Wrexham Glyndŵr

University. The two- and three-dimensional numerical simulations were performed

investigate the effect of drag reduction.

mimicking nature's details and functions.

shark families

Andreas Manz

Technikerschule Augsburg (TA Augsburg)

Graduated in 2017 BEng. Performance Car Technology 1st

Currently studying MSc Mechanical Manufacturing

Runner up in the 2017 North Wales Society of Engineering video presentation

Published a Paper in IEEE Conference

Publishing a peer reviewed Journal Paper

Application for PhD in Progress

YOUR

Assistant Lecturer in Computational Fluid Mechanics and FEA

Wrexham B.Eng (Horn) Performance Car Technology A NUMERICAL AND EXPERIMENTAL INVESTIGATION OF FLOW AROUND A CIRCULAR glyndŵr CYLINDER APPLYING BIONIC STRUCTURE TO REDUCE DRAG E-mail: monz.andreas@gmx.de Supervisor: Shafiul Monin

Investigation Overview **Experimental Analysis**

Almost perfect surface structures have been Experimental setup for the analysis of the flow developed through a continuous process of around a circular cylinder in five flow cases evolution by nature. Therefore, engineers and resulting in a Reynolds number range from scientists have been observing nature and Re.=8.09-104 to Re.=2.02-105. mimicking biological structures in engineering applications. The characteristic dermal denticles of sharks are known to influence the boundary layer behaviour for instance.

Pressure coefficient around a circular cylinder. Comparison of C_p real and C_p ideal for five flow cases

Numerical Analysis Of Uneven Structures

Pressure coefficient on the upper surface of a circular cylinder (2D) Contours of velocity magnitude in the case of for Re,=2.02-10°. Comparison of uneven structures against the smooth design.

Comparison of two-dimensional uneven structures against a smooth design. Drag and Coefficient of drag as a function of the Reynolds

	19	110000000	- 7 p	
Cash Card To	d time & time of the	ed taxit favi	Cale 0 1944 0	24
Ball 18 18 18	23 18 1	1 12 13	1.8 1.7	10
Sector and the sector of the s			and the second second	
	100	1.0		
	10	1.0		
		1.0		-
		-		

Conclusion

The study of the flow around a circular cylinder in the Reynolds number range of Re,=8.09-10" to Re.=2.02-10¹ by using a steady-state solution and the RANS approach support the ability to predict values of good agreement with experimental data.

It was found that crosswise to the free stream aligned riblets and golf ball similar structures are able to reduce the average drag force up to 12.45 % within the Reynolds number range defined. On the other hand, the from shark skin adapted roughness preparations with streamwise aligned riblets showed the potential to reduce the average drag force by almost 15 %.

Geometries and structures determined show specific improvements in the drag reduction and therefore provide the opportunity of designing structures with the potential to lower the air resistance

John Winn Franz-Oberthür-Techniker Schule

Graduated in 2017 BEng. Performance Car Technology 1st

MSc Fast Track Mechanical Manufacturing Graduate (2018)

Engineering at Glyndŵr - Faculty of Arts, Science & Technology

Student Achievements

Der M.Sc. fast track Studiengang war im Vergleich zum Regel M.Sc. Studiengang der effizienteste Weg, da man alle Vorlesungen in zwei Monaten, anstatt über zwölf Monate verteilt, absolvieren kann. Dies hat den Vorteil schon ab August zuhause sein zu können. Die Master Abschlussarbeit findet, von September bis Mai, in eigener Regie oder in Zusammenarbeit mit einer Firma in Deutschland statt. Kleiner Tipp, zum Ende des Bachelors schon nach potenziellen Firmen und deren Themen erkundigen, sofern man nicht ein eigenes Projekt umsetzen möchte.

Der fast track Master hat es dennoch in sich. Man ist Wort wörtlich ständig in der Uni, da man in der Regel acht Stunden am Tag Vorlesung hat und parallel dazu noch eine Vielzahl an Hausarbeiten schreiben und sich auf drei schriftliche Prüfungen vorbereiten muss. Keine Angst, es bliebt trotzdem genug Zeit an den Wochenenden zu grillen und Bier zu trinken ;)

Während der Abschlussarbeit kann man sich aufhalten wo man will, sofern man unabhängig von einer Firma ein Thema ausarbeitet. Für eventuelle fragen und Hilfestellung steht einem ein selbst gewählter Universitäts Supervisor per Skype zur Seite. Mein Supervisor ist der junge Mann der diese Präsentation hält, den ich wärmstens empfehlen kann.

Im Vergleich zum Bachelor, hat der Master den Vorteil, dass man seine Studiums Kollegen besser kennen lernt weil man auch viel mehr Zeit miteinander verbringt. Ich kann es jedem empfehlen, denn es bilden sich in dieser Zeit Freundschaften die weit über das Studium hinaus reichen. Aber genug von mir, ich will ja nicht gleich alles für euch Spoilern ;)

PhD completion:

• Robert Schneider (2016) An Analysis of Aluminium Sheet Metal Alloys on their Formability Behaviour at Cryogenic Temperatures. PhD, University of Wales.

MPhil completion:

- Bernhard Bonney (2016) Design of Wake Vortex Alleviated Wings Subjected to Structural Deformation. MPhil, University of Wales.
- Matthias Menzl (2016) The Advancement of Punch Cutting Tools Using Ceramics. MPhil, University of Wales.

Engineering at Glyndŵr - Faculty of Arts, Science & Technology

Student Achievements

s, science & reciniou

Research papers published by BEng and MSc German students in IEEE Xplore Digital Library as conference papers:

- Knupfer, M., et al. (2016). Cross impact analysis of vehicle-to-grid technologies in the context of 2030. In: Proc. 9th Int. Conference on Power Drives Systems ICPDS-2016, Perm, 3-7 October 2016, 5p.
- Pommerening, P., et al. (2016). Future grid 2050 in context of UK Gone Green scenario. In: Proc. 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference, Saint Petersburg, Russia, 2-3 February 2016, pp. 780-784.
- Bucher, M., et al. (2015). Estimation of electrical energy demand by electric vehicles from households: A UK perspective. In: Proc. 2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference, Saint Petersburg, Russia, 2-3 February 2015, pp. 159-164,
- Klein, K. et al. (2015) Modelling of a turbojet gas turbine engine. In: Proc. 6th IEEE Int. Conference on Internet Technologies and Applications ITA-15, Wrexham, UK, 8-11 September 2015, pp. 200-206,

<u>Glyndŵr University Engineering – To Find Out More</u>

admissions@glyndwr.ac.uk

Sioned Evans, FAST School Manager Sioned.Evans@glyndwr.ac.uk

www.glyndwr.ac.uk/en/Europeanstudents/

Finally, we anticipate that this could be you in 2020 !!

